Abstract

Symmetric fully liquid-crystalline triblock copolymers of various structures containing optically active mesogenic groups are for the first time synthesized via pseudoliving radical reversible addition-fragmentation chain-transfer polymerization. Their phase behavior and physicochemical and optical properties are studied. It is shown that, depending on composition, at low temperatures block copolymers can form at temperatures phase-separated structures caused by microsegregation of blocks of different chemical natures and that, with an increase in temperature, these structures can mix to form a cholesteric mesophase characterized by a helical supramolecular structure. A model illustrating the molecular packing of block copolymers with a phase-separated lamellar structure is advanced. The effect of the molecular structure of the block copolymers on their optical properties is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.