Abstract

AbstractThe synthesis and characterization of organic nanoparticles composed of a polymer network of azobenzene moieties and capable of reproducible, photoinduced mechanical actuation are reported. The molecules within the nanoparticles undergo co‐ordinated, reversible isomerization between cis‐ and trans‐conformations in response to ultraviolet and visible electromagnetic radiation, resulting in a reversible 20% height contraction of nanoparticles adsorbed on a substrate. The kinetics of the actuation response as a function of light intensity and duration are reported and closely match the molecular kinetics of azobenzene photoisomerization. The results support the proposed mechanism of co‐ordinated molecular conformational changes resulting in observable nanoscale actuation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.