Abstract

Although discovered almost a century ago, it was until the mid sixties that liquid crystals were just regarded as curious materials that exhibited unusual properties as they melted from a solid to a liquid state of matter. Today liquid crystals (LC) have become the basis of many advanced technologies. They are extensively used in displays of wristwatches, calculators, laptop computers, aircraft and many appliances and have newer applications in flat-panel television, large switchable privacy windows, optical computing and optical devices for communication networks. The future of liquid crystals is envisaged to look even more promising because of their important role in biology and their hitherto not fully discovered potential for applications in food, agriculture, medicine, high performance materials development and other industrial and biotechnological processes. Major classes of biological compounds including lipids, proteins, carbohydrates and nucleic acids all have been found to exist in various liquid crystalline phases in vivo as well as in vitro under well-defined conditions. Their liquid crystalline structure is envisaged to have a very important role in their biological functions and self assembly processes. In order to get a better insight into biological processes at supramolecular level it is very important to have, in depth, knowledge of properties of liquid crystalline materials. This paper gives a brief introduction to liquid crystals and reviews literature on liquid crystalline behaviour of biopolymers both in vitro and in vivo in relation to their implications in the fields of biology, medicine and material science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.