Abstract

A frequency selective surface (FSS) which exploits the dielectric anisotropy of liquid crystals to generate an electronically tunable bandpass filter response at D Band (110-170 GHz) is presented. The device consists of two printed arrays of slot elements which are separated by a 130-mum thick layer of liquid crystals. A 3% shift in the filter passband occurs when the substrate permittivity is increased by applying a control signal of 10 V. Measured results show that the insertion loss increases from -3.7 dB to -10.4 dB at resonance (134 GHz), thus demonstrating the potential to create a FSS which can be switched between a transmitting and a reflecting structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call