Abstract

An electrically tunable terahertz (THz) modulator with large modulation depth and low insertion loss is performed with liquid crystal (LC) metamaterial. The modulation depth beyond 90% and insertion loss below 0.5 dB are achievable at normal incidence by exploiting plasmon-induced transparency (PIT) effect. The PIT spectra can be manipulated by actively controlling the interference between dipole mode and nonlocal surface-Bloch mode with LC. The incident angle tuning effect on PIT spectra shows that the large modulation depth and low insertion loss can remain over a wide range of working angles. The superior property and simplicity of design make this modulator promising in advanced terahertz communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call