Abstract

This letter presents a novel temperature sensor, which consists of an interdigitated comb electrode structure with a micrometric-scale size, nanometric metallic layer, and nematic liquid crystal (NLC) film. This sensor exploits the permittivity dependence of the NLC with temperature and principle of electrical conductivity above the percolation threshold in thin film metallic layers. The latter has been demonstrated to increase the temperature sensitivity considerably. The high impedance input reduces the power dissipation, and the high enough voltage output makes it easy to measure the output signal with high precision. The operation principle and fabrication process as well as the characterization of the temperature sensor are presented. Experimental results show that the device offers a sensitivity of 9 mV/°C and is dependent on the applied voltage. This is six times greater than the same structure without the use of a nanometric layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.