Abstract
The phase behaviour of achiral banana-shaped molecules was studied by computer simulation. The banana-shaped molecules were described by model intermolecular interactions based on the Gay-Berne potential. The characteristic molecular structure was considered by joining two calamitic Gay-Berne particles through a bond to form a biaxial molecule of point symmetry group C 2v with a suitable bending angle. The dependence on temperature of systems of N=1024 rigid banana-shaped molecules with bending angle φ =140° has been studied by means of Monte Carlo simulations in the isobaric-isothermal ensemble (NpT). On cooling an isotropic system, two phase transitions characterized by phase transition enthalpy, entropy and relative volume change have been observed. For the first time by computer simulation of a many-particle system of banana-shaped molecules, at low temperature an untilted smectic phase showing a global phase biaxiality and a spontaneous local polarization in the layers, i.e. a local polar arrangement of the steric dipoles, with an antiferroelectric-like superstructure could be proven, a phase structure which recently has been discovered experimentally. Additionally, at intermediate temperature a nematic-like phase has been proved, whereas close to the transition to the smectic phase hints of a spontaneous achiral symmetry breaking have been determined. Here, in the absence of a layered structure a helical superstructure has been formed. All phases have been characterized by visual representations of selected configurations, scalar and pseudoscalar correlation functions, and order parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.