Abstract
AbstractDense iodinated reduced graphene oxide (rGO) with outstanding electrical and electrochemical properties is produced through a green method comprising liquid crystal‐mediated assembly of polyiodides and GO, and subsequent UV irradiation. The dense rGO electrode (1.46 g/cm3) exhibited a very high volumetric capacitance of 226 F/cm3, a factor of three larger than commercial activated carbon, and amongst the highest reported for graphene. The scalability is demonstrated by the fabrication of supercapacitor pouch cells that realized a volumetric energy density of 0.94 Wh/l, comparable to market products with similar footprint, while advantageously using a safe and green aqueous electrolyte. Our pouch cell powered battery‐less Internet of Things (IoT) sensor nodes and demonstrated sensing and transmission of over 40 temperature and relative humidity data packets. Our work establishes the critical advantages graphene‐based materials have over activated carbons in terms of ease of fabrication, tailorability, and enhanced volumetric energy density to advance the state‐of‐art in supercapacitor device research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.