Abstract

We report the design and characterization of liquid crystal (LC)-infused porous polymer membranes that can detect and report on the presence of natural and synthetic amphiphiles in aqueous solution. We demonstrate that thermotropic LCs can be infused into nanoporous polymer membranes to yield LC-infused surfaces that exhibit slippery behaviors in contact with a range of aqueous fluids. In contrast to conventional liquid-infused surfaces (LIS) or slippery liquid-infused porous surfaces (SLIPS) prepared using isotropic oils, aqueous solutions slide over the surfaces of these LC-infused materials at speeds that depend strongly upon the composition of the fluid, including the presence, concentration, or structure of a dissolved surfactant. In general, the sliding times of aqueous droplets on these LC-infused surfaces increase significantly (e.g., from times on the order of seconds to times on the order of minutes) with increasing amphiphile concentration, allowing sliding times to be used to estimate the concentration of the amphiphile. Additional experiments revealed other intrinsic and extrinsic variables or parameters that can be used to further manipulate droplet sliding times and discriminate among amphiphiles of similar structure. Our results are consistent with a physical picture that involves reversible changes in the interfacial orientation of anisotropic LCs mediated by the interfacial adsorption of amphiphiles. These materials thus permit facile "naked-eye" detection and discrimination of amphiphiles in aqueous samples using equipment no more sophisticated than a stopwatch. We demonstrate the potential utility of these LC-infused surfaces for the unaided, naked-eye detection and monitoring of amphiphilic biotoxins in small droplets of fluid extracted directly from cultures of two common bacterial pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The ability to translate molecular interactions at aqueous/LC interfaces into large and readily observed changes in the sliding times of small aqueous droplets on surfaces could open the door to new applications for antifouling, liquid-infused materials in the context of environmental sensing and other fundamental and applied areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.