Abstract
The chemical crosslinking of the linear LC-side chain polymers yields elastomers (rubbers) which exhibit the liquid crystalline state. The mechanical deformation of these elastomers by elongation or compression causes a macroscopic orientation of the liquid crystalline molecules linked to the polymer network similar to the electric field orientation of low molar mass liquid crystals. In this way elastomer films can be prepared, whose macroscopic optical properties are similar to the optical properties of an anisotropic single crystal having the same dimension. There is, however, an additional feature to these elastomers: a local deformation of the macroscopically aligned film causes a local chance of the optical properties. If the plane surface of the film is brought in contact with a stamp, which has a defined pattern in the micrometer range, the pattern deforms the elastomer surface and consequently the local direction of the optical axis. It is obvious that this procedure enables the simple realisation of elements for the integrated optics. The light conductors can be mechanically pressed into the liquid crystalline elastomer film (similar to the production of a record) and durably stored in the glassy state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.