Abstract

Liquid crystal elastomers (LCEs) are a class of stimuli-responsive materials that have been intensively studied for applications including artificial muscles, shape morphing structures, and soft robotics, due to their capability of large, programmable, and fully reversible actuation strains. To fully take advantage of LCEs, rapid, untethered, and programmable actuation methods are highly desirable. Here, we report a liquid crystal elastomer-liquid metal (LCE-LM) composite, which enables ultrafast and programmable actuations by eddy current induction heating. The composite consists of LM sandwiched between two LCE layers printed via direct ink writing (DIW). When subjected to a high-frequency alternating magnetic field, the composite is actuated in milliseconds. By moving the magnetic field, the eddy current is spatially controlled for selective actuation. Additionally, sequential actuation is achievable by programming the LM thickness distribution in a sample. With these capabilities, the LCE-LM composite is further exploited for multimodal deformation of a pop-up structure, on-ground omnidirectional robotic motion, and in-water targeted object manipulation and crawling. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call