Abstract

The sophisticated and complex haptonastic movements in response to environmental-stimuli of living organisms have always fascinated scientists. However, how to fundamentally mimic the sophisticated hierarchical architectures of living organisms to provide the artificial counterparts with similar or even beyond-natural functions based on the underlying mechanism remains a major scientific challenge. Here, liquid crystal elastomer (LCE) artificial tendrils showing evolutionary biomimetic locomotion are developed following the structure-function principle that is used in nature to grow climbing plants. These elaborately designed tendril-like LCE actuators possess an asymmetric core-sheath architecture which shows a higher-to-lower transition in the degree of LC orientation from the sheath-to-core layer across the semi-ellipse cross-section. Upon heating and cooling, the LCE artificial tendril can undergo reversible tendril-like shape-morphing behaviors, such as helical coiling/winding, and perversion. The fundamental mechanism of the helical shape-morphing of the artificial tendril is revealed by using theoretical models and finite element simulations. Besides, the incorporation of metal-ligand coordination into the LCE network provides the artificial tendril with reconfigurable shape-morphing performances such as helical transitions and rotational deformations. Finally, the abilities of helical and rotational deformations are integrated into a new reprogrammed flagellum-like architecture to perform evolutionary locomotion mimicking the haptonastic movements of the natural flagellum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call