Abstract

Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. We have already successfully fabricated certain prototypes of the optical switches based on various electrooptic modes in ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. We have already used the photoaligning materials to align LC mixtures in small cavities, such as the holes and tubes of photonic crystals, having size of 1 μm and less and obtained excellent LC orientation inside the tubes by photoalignment. The prototypes of new LC efficient Photonics devices, such as optically rewritable LC waveguides and voltage controllable diffraction gratings are envisaged. The polarization controllers, polarization rotators, variable optical attenuators and other passive LC optical elements for fiber communication networks are under way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.