Abstract

Protein assays show great importance in medical research and disease diagnoses. Liquid crystals (LCs), as a branch of sensitive materials, offer promising applicability in the field of biosensing. Herein, we developed an ultrasensitive biosensor for the detection of low-concentration protein molecules, employing LC-amplified optofluidic resonators. In this design, the orientation of LCs was disturbed by immobilized protein molecules through the reduction of the vertical anchoring force from the alignment layer. A biosensing platform based on the whispering-gallery mode (WGM) from the LC-amplified optofluidic resonator was developed and explored, in which the spectral wavelength shift was monitored as the sensing parameter. The microbubble structure provided a stable and reliable WGM resonator with a high Q factor for LCs. It is demonstrated that the wall thickness of the microbubble played a key role in enhancing the sensitivity of the LC-amplified WGM microcavity. It is also found that protein molecules coated on the internal surface of microbubble led to their interactions with laser beams and the orientation transition of LCs. Both effects amplified the target information and triggered a sensitive wavelength shift in WGM spectra. A detection limit of 1 fM for bovine serum albumin (BSA) was achieved to demonstrate the high-sensitivity of our sensing platform in protein assays. Compared to the detection using a conventional polarized optical microscope (POM), the sensitivity was improved by seven orders of magnitude. Furthermore, multiple types of proteins and specific biosensing were also investigated to verify the potential of LC-amplified optofluidic resonators in the biomolecular detection. Our studies indicate that LC-amplified optofluidic resonators offer a new solution for the ultrasensitive real-time biosensing and the characterization of biomolecular interactions.

Highlights

  • Proteins, as essential components of organisms, play important roles in controlling biological activities and metabolism

  • Effect of protein concentration variations on Liquid crystals (LCs)-amplified optofluidic resonator Firstly, we investigated the influence of protein molecules on the LC-amplified optofluidic cavity

  • In this study, we exploited a highly sensitive LC-amplified optofluidic resonator biosensor based on whispering-gallery mode (WGM) spectra for the quantitative analysis of proteins

Read more

Summary

Introduction

As essential components of organisms, play important roles in controlling biological activities and metabolism. Sensitive and selective identification and quantification of proteins are crucial due to their great importance for medical research and disease diagnoses in indicating pathological biological conditions [1, 2]. IgG and its antibody provide reliable biomarkers related to COVID-19 [4, 5], their detection can help prevent and control the virus infection at an early stage. Routine technologies including mass spectrometry, enzyme-linked immunosorbent assays (ELISA) and fluorescence immunoassay, have varied capabilities for protein assay and there still remain several limitations due to high-cost and complex operations of such approaches [2]. The development of a low-cost, stable and promising alternative method for protein detection is urgent and essential

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.