Abstract

Abstract Electric propulsors powered by Proton Exchange Membrane Fuel Cells (PEMFCs) offer a net zero solution to aircraft propulsion provided that the hydrogen reactant is produced renewably. Heat generated by the PEMFCs can be transferred to atmospheric air via a liquid cooling system; however, the cooling system results in parasitic power and adds mass to the propulsion system, thereby affecting system specific power. The design of the cooling system is sensitive to the choice of liquid coolant and so informed coolant selection is required if associated parasitic power and mass are to be minimized. Two approaches to selection of coolants for PEMFC-powered aircraft are presented in this paper for operating temperatures in the range 80–200°C (this covers low, intermediate, and high temperature PEMFCs). The first approach uses a Figure of Merit (FoM) alongside minimum and maximum operating temperature requirements. The FoM supports the selection of coolants that minimize pumping power and mass while maximizing heat transfer rate. The second approach uses a cooling system model to select “Pareto efficient” coolants. A hybrid-electric aircraft using a PEMFC stack is used as a representative case study for the two approaches. Hydrocarbon-based coolants are shown to be favorable for the case study considered here (aromatics for PEMFCs operating at < 130°C and aliphatics for PEMFCs operating at > 130°C). As the PEMFC operating temperature increases, the parasitic power and mass of the TMS decreases. Operating at elevated temperatures is therefore beneficial for liquid cooled PEMFC-powered aircraft. Nevertheless, there are diminishing gains in performance at higher operating temperatures. The two approaches outlined in this paper are useful to PEMFC TMS designers. The FoM enables expedient coolant screening in preliminary TMS design, and the model provides a high-fidelity method for optimal coolant selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.