Abstract

Electrochemical biosensors hold promise for advanced analytical applications in modern life analysis due to their miniaturization and cost-effectiveness. Nevertheless, their implementation in complex biological systems necessitates overcoming challenges related to timeliness, sensitivity, and interference resistance. Here, we developed a novel DNA hydrogel three-dimensional electron transporter through liquid-colloid-solid assembly, integrating electronic mediators and employing porous electrode covers with 3D printing technology. Our approach facilitated the fabrication of a high-performance electrochemical sensor for small molecule detection, leveraging target-specific aptamers and catalytic hairpin assembly (CHA) elements within the DNA hydrogel, which exhibited outstanding selectivity, sensitivity, and universality, achieving detection limits of 0.047 nM for kanamycin and 2.67 pM for ATP. Furthermore, this sensor could detect kanamycin in real samples, demonstrating good accuracy and robust anti-interference capabilities in human serum. Our work not only possesses substantial application value in clinical sample analysis but also represents a breakthrough in traditional strategies, thereby contributing to advancements in the application of electrochemical biosensors for life analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.