Abstract
Azilsartan medoxomil potassium (AZM) is a new antihypertensive drug introduced in the year 2011. The presence of degradation products not only affects the quality, but also the safety aspects of the drug. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate and identify the degradation products of azilsartan medoxomil potassium. AZM was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC(®) C18 CSH column with mobile phase consisting of 0.02% trifluoroacetic acid and acetonitrile using a gradient method. Identification and characterization of the degradation products was carried out using LC/electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). A total of five degradation products (DP 1 to DP 5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and accurate mass data. A common degradation product (DP 4) was observed under all the degradation conditions. DP 1, DP 2 and DP 5 were observed under acid hydrolytic conditions whereas DP 3 was observed under alkaline conditions. AZM was found to degrade under hydrolytic, oxidative and photolytic stress conditions. The structures of all the degradation products were proposed. The degradation pathway for the formation of degradation products was also hypothesized. A selective method was developed to quantify the drug in the presence of degradation products which is useful to monitor the quality of AZM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.