Abstract

The antioxidant enzyme human extracellular superoxide dismutase (SOD3) is a promising biopharmaceutical candidate for the treatment of various diseases. To support the early development of SOD3 as a biopharmaceutical, a simple, sensitive, and rapid liquid chromatography tandem mass spectrometry procedure was developed and validated for the determination of SOD3 levels in the plasma of ICR mice. After purification with Ni-NTA magnetic beads and digestion with trypsin, SOD3 signature peptides and internal standard signature peptide (ISP) were separated via high performance liquid chromatography using a Zorbax C18 column (2.1 × 50 mm, 3.5 μm) and a mobile phase consisting of 10 mM ammonium formate, 0.1% formic acid, and acetonitrile. The analyte and ISP were detected via a tandem mass spectrometer in electrospray ionization and multiple reaction monitoring modes to select both the signature peptide for SOD3 at m/z 669 to 969 and the ISP at m/z 655 to 941 in the positive ion mode. The calibration curves were linear (r > 0.99) between 5 and 1000 μg/mL with a lower limit of quantification of 5 μg/mL. The relative standard deviation ranged from 3.08 to 8.84% while the relative error ranged from -0.13 to -9.56%. This method was successfully applied to a preclinical pharmacokinetic study of SOD3 in male ICR mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call