Abstract
The fabrication and application of a novel electrochemical detection (ED) method with the functionalized multi-wall carbon nanotubes (MWNTs) chemically modified electrode (CME) for liquid chromatography (LC) were described. The electrochemical behaviors of dopamine (DA) and other monoamine neurotransmitters at the CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that the CME exhibited efficient electrocatalytic effects on the current responses of monoamine neurotransmitters and their metabolites with high sensitivity, high stability and long-life activity. In LC–ED, DA, norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) had good and stable current responses at the CME. The linear ranges of seven analytes were over four orders of magnitude and the detection limits were 2.5·10 −10 mol/l for DA, 2.5×10 −10 mol/l for NE, 5.0·10 −10 mol/l for MHPG, 3.0·10 −10 mol/l for DOPAC, 3.5·10 −10 mol/l for 5-HT, 6.0·10 −10 mol/l for 5-HIAA, 1.25·10 −9 mol/l for HVA. The application of this method coupled with microdialysis sampling for the determination of monoamine neurotransmitters and their metabolites in Parkinsonian patients’ cerebrospinal fluid was satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.