Abstract
Clarification the existence forms, including prototype and metabolite(s) is the prerequisite for understanding in-depth the therapeutic mechanisms of a given agent, particularly when oral administration. However, it is still a long distance for unambiguous structural identification of metabolites even employing the cutting-edge MS/MS technique, and the determinant obstacle is produced by its inherent isomer-blind disadvantage. To tackle with this drawback, online energy-resolved mass spectrometry (online ER-MS) was introduced to enable isomeric discrimination after that high-resolution MS/MS provided empirical molecular formula as well as substructures. In-depth metabolic characterization of cistanoside F (CF), an effective natural product, was conducted as a proof-of-concept for the new strategy namely three-dimensional MS that was configured by MS1, MS2 and online ER-MS as 1st, 2nd, and 3rd dimensions, respectively. Sensitive metabolite detection was assisted by predictive multiple-reaction monitoring function on Qtrap-MS, and the empirical formulas of all metabolites were calculated from the quasi-molecular ions yielded from IT-TOF-MS. Subsequently, substructures of each metabolite were constructed by combining the calculated element compositions and the well-defined mass fragmentation pathways. Finally, online ER-MS was responsible to generate optimal collision energies for bonds-of-interest, and enabled rational selection among candidate structures. A total of thirteen metabolites were detected and confirmatively identified in rat after oral treatment of CF using LC–3D MS. Acyl-migration, hydrolysis and sulfation played key roles for the metabolic fate of CF. More importantly, LC–3D MS is an eligible tool to achieve confidence-enhanced structural annotation of metabolites in biological matrices because of the unique isomeric differentiation ability from online ER-MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.