Abstract
Fulvestrant ('Faslodex'), an estrogen receptor antagonist, is available for the treatment of advanced breast cancer. The oil-based vehicle of Faslodex can lead to various adverse effects. A novel fulvestrant microcrystal (aqueous suspension) was developed in this study to eliminate these adverse effects. A sensitive and robust liquid chromatography tandem mass spectrometry method was developed and validated for the determination of fulvestrant in rat plasma using supported-liquid extraction. The separation of fulvestrant was achieved on an Agilent SB-C18 column (2.1 × 50 mm, 3.5 μm) with isocratic elution using fulvestrant-d3 as internal standard. Mass spectrometric detection was conducted in negative multiple reaction monitoring mode. Ion transitions were at m/z 605.5 → 427.5 for fulvestrant and m/z 608.5 → 430.5 for fulvestrant-d3. The excellent linearity was demonstrated over the range 0.05-100.0 ng/ml (r2 = 0.99). The lower limit of quantitation was 0.05 ng/ml, which was superior to that reported in literature The method validation was evaluated by selectivity, accuracy, precision, recovery and matrix effect in agreement with the US Food and Drug Administration guidance. The method was successfully applied to a pharmacokinetic study of a novel fulvestrant microcrystal in rats after intramuscular administration. It revealed that the rate of absorption increases and the extent of absorption is constant with a decrease in microcrystal diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.