Abstract

A new analytical method has been developed and validated for the detection and quantification of 2-monochloropropanediol (2-MCPD) esters in edible oils. The target compounds are potentially carcinogenic contaminants formed during the processing of edible oils. As the 2-MCPD esters that occur most frequently in refined edible oils were not commercially available, standards were synthesized with identity and purity (95+%) confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and (1)H NMR. Target analytes are separated from edible oil matrices using a two-step solid-phase extraction (SPE) procedure. The extracts are then analyzed using LC-MS/MS with electrospray ionization (ESI). The method has been validated for 11 2-MCPD diesters and 3 2-MCPD monoesters in soybean oil, olive oil, and palm oil using an external calibration curve. The ranges of average recoveries and relative standard deviations (RSD) across the three oil matrices at three spiking concentrations are 79-106% (3-13% RSD) for the 2-MCPD diesters and 72-108% (4-17% RSD) for the 2-MCPD monoesters, with limits of quantitation at or below 30 ng/g for the diesters and 90 ng/g for the monoesters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call