Abstract

European Union legislation has established that plastic food contact materials shall not release primary aromatic amines (PAAs), which are toxic compounds and suspected human carcinogens. As valid alternative to existing methods for PAA determination, which are based on spectrophotometric test or targeted liquid chromatography–tandem mass spectrometry (LC–MS/MS) approaches, in this study a LC-Orbitrap–full scan-high resolution mass spectrometry (HRMS) method was devised and validated for the determination of migration levels of 22 PAAs from food contact materials, thus exploiting the specificity of accurate mass measurement. Direct injection of the simulant (acetic acid 3%, w/v) into the LC–MS system after migration, without any pre-treatment step, makes the developed method of great value for rapid screening analysis of a large number of amines. A very fast and efficient separation (<11min) of PAAs was achieved. Detection limits in the 0.06–0.7μgkg−1 range were calculated for 17 out of 22 of the investigated PAAs, however obtaining values within 5.3μgkg−1 for the other 5 amines. Good dynamic linear ranges from two to four orders of magnitude (r2≥0.990) were obtained and satisfying results were achieved in terms of intra-day (RSDs<10%) and inter-day repeatability (RSDs<17%). Trueness values in the 70±1–131±5% range proved reliability of the developed method for PAAs quantification also at very low concentration levels. Finally, the method was successfully applied to a range of different real plastic multilayer food packaging materials, noticing in all cases levels below the established limits of detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.