Abstract

Nilutamide, a nonsteroidal anti-androgen drug, widely used in the treatment of prostate cancer, was subjected to hydrolytic, photolytic, thermal and oxidative stress conditions as per International Conference on Harmonization guidelines Q1A (R2). Nilutamide showed significant degradation under basic hydrolysis and photolytic stress conditions, while it was stable to neutral, acidic and thermal stress conditions. Five degradation products were formed and the chromatographic separation of nilutamide and its degradation products was achieved on a Waters C18 column (4.6 × 250 mm, 5 µm) using a mobile phase consisting of acetonitrile and 0.1% of formic acid in an isocratic elution method. All these degradation products were characterized by LC/MS/MS in negative ion mode, combined with accurate mass measurements. To assign likely structures for the observed degradation products, the fragmentation patterns of the deprotonated drug and its degradation products were compared. The in silico toxicity of the drug and its degradation products was also assessed using TOPKAT software. The carcinogenicity probability of the degradation products, DP-I-IV, was greater than that of nilutamide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call