Abstract

The (2,4-dinitrophenyl)hydrazones of carbonyls are separated by liquid chromatography and detected by ultraviolet spectroscopy (diode array detector) and by atmospheric pressure negative chemical ionization mass spectrometry. Results are presented for 78 carbonyls including 18 1-alkanals (from formaldehyde to octadecanal), 16 other saturated aliphatic carbonyls (5 C(4)-C(7) aldehydes and 11 C(3)-C(9) ketones), 16 unsaturated aliphatic carbonyls (9 C(3)-C(11) aldehydes and 7 C(4)-C(9) ketones), 13 aromatic carbonyls (including hydroxy- and/or methoxy-substituted compounds), 10 C(2)-C(10) aliphatic dicarbonyls, 3 aliphatic carbonyl esters, and 2 other carbonyls. Isomers were observed for α,β-unsaturated ketones and saturated carbonyls that bear other oxygen-containing substituents, e.g. methoxyacetone, 2-furaldehyde, and the 3 carbonyl esters. For all but two of the carbonyls studied, the base peak in the negative APCI mass spectrum was the M - 1 ion (NO(2))(2)C(6)H(3)NN [Formula: see text] CR(1)R(2) (R(1) = H for aldehydes), where M is the molecular mass of the carbonyl (2,4-dinitrophenyl)hydrazone derivative. The dicarbonyls 2,4-pentanedione and succinic dialdehyde reacted with DNPH to yield predominantly other products. Concentrations measured by ultraviolet spectroscopy (peak area) and by mass spectrometry (abundance of M - 1 ion) were in good agreement. Applications described include the measurement of 34 C(1)-C(18) carbonyls at levels of 0.015-14 parts per billion (ppb) in urban air and the identification of carbonyls at ppb concentrations as reaction products in laboratory studies of the atmospheric oxidation of unsaturated organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.