Abstract

A simple normal-phase (silica), high-performance liquid chromatographic (HPLC) assay of amitriptyline (AMI), doxepin (DOX), imipramine (IMI), nortriptyline (NORT), desmethyldoxepin (DESDOX), desipramine (DESIP), and protriptyline (PRO) in serum with no coelution is described here. Trimipramine and promazine were used as internal standards. Extraction of the 1.0-ml serum samples (collected in plastic) was done with Bond-Elut C18 columns. The compounds of interest were eluted with 10 mM methanolic ammonium acetate. The eluates were evaporated at 56-58 degrees C and reconstituted with 200 microliters of the mobile phase. The mobile phase was absolute ethanol-acetonitrile-tert-butylamine (98:2:0.05, vol/vol/vol). Detection of eluted drugs was at 254 nm at 0.01 absorbance units full scale (AUFS), except for PRO, which was detected at 229 nm at 0.02 AUFS. Absolute recoveries were 87-97%. A 5-micron silica (4.6 X 250 mm) HPLC column was used; results with a 10-micron silica column (3.9 X 300 mm) are also presented. Peak height ratios with trimipramine were linear for each analyte between 25 and 1200 ng/ml. Peak height ratios with promazine as the internal standard were linear for each analyte between 25 and 600 ng/ml. Detection limits under the conditions described were 2 ng/ml for AMI, DOX, and IMI, 4 ng/ml for NORT, DESDOX, and DESIP, and 10 ng/ml for PRO. Coefficients of within-day and day-to-day variation at three concentration levels were less than 9.8% and less than 11.2%, respectively. The hydroxylated metabolites of IMI, DES, NORT, and the cis isomer of DOX are discussed. Steady-state daily dosages and corresponding serum levels are presented for 69 patients. The total assay time was less than 10 min for DESIP and 12 min for PRO. This assay can be used in correlating serum levels with clinical effects, compliancy, and pharmacokinetic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.