Abstract

We report results of a comprehensive study of liquid boron with x-ray measurements of the atomic structure and dynamics coupled with ab initio molecular dynamics simulations. There is no evidence of survival into the liquid of the icosahedral arrangements that characterize the crystal structures of boron but many atoms appear to adopt a geometry corresponding to the pentagonal pyramids of the crystalline phases. Despite similarities in the melting behavior of boron and silicon, there is little evidence of a significant structural shift with temperature that might suggest an eventual liquid-liquid phase transition. Relatively poor agreement with the observed damping of the sound excitations is obtained with the simple form of mode-coupling theory that has proved successful with other monatomic liquids, indicating that higher-order correlation functions arising from directional bonding and short-lived local structures are playing a crucial role. The large ratio of the high frequency to the isothermal sound velocity indicates a much stronger viscoelastic stiffening than in other monatomic liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.