Abstract

Hydroponic experiments were conducted to investigate impact of laser ablated copper oxide nanoparticles (CuO-NPs) on rice seedlings. The present work demonstrates that exposure of lower concentrations (5, 10, 20, and 50 µM) of CuO-NPs enhance growth (in terms of fresh and dry weight and length), of rice seedlings. However, at higher concentrations (100, 200, and 500 µM) of CuO-NPs, growth (in terms of length, fresh weight and dry weight) decreased significantly (P < 0.05). Further, photosynthetic pigments (total chlorophyll and carotenoids) and protein contents were also found to be in accordance with the results of growth. This had occurred due to enhanced level of CuO-NPs accumulation at higher doses which also enhanced the level of oxidative stress markers such as hydrogen peroxide (H2O2) and malondialdehyde (MDA). Chlorophyll a fluorescence parameters (Fv/Fm and qP and except NPQ) and amount of some minerals (Ca, Mg, Na, and K) increased at lower concentrations of CuO-NPs. In contrast, the levels of Fv/Fm and qP were significantly (P < 0.05) reduced at higher concentration of CuO-NPs, which might be due to enhanced accumulation of Cu and oxidative stresses markers. Our results showed that lower dosages of pulsed laser ablated CuO-NPs (5, 10, 20, and 50 µM) might be beneficial for growth and development of rice seedlings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call