Abstract

The ARAPUCA is a novel concept for liquid argon scintillation light detection which has been proposed for the photon detection system of the Deep Underground Neutrino Experiment. The test in liquid argon of one of the first ARAPUCA prototypes is presented in this work, where the working principle is experimentally demonstrated. The prototype has an acceptance window of 9 cm2 and is read-out by a single SiPM with active area of 0.36 cm2. Its global detection efficiency was estimated by exposing it to a natural Uranium α source and to cosmic rays and was found to be 1.10% ± 0.15%, which translates into an amplification of the effective detection area of the SiPM by a factor of about 3.7, in reasonable agreement with the prediction of a detailed Monte Carlo simulation of the device. Several other ARAPUCA prototypes of bigger dimensions and read-out by arrays of SiPMs have been built and are actually under test. In particular 32 ARAPUCA cells have been installed inside the protoDUNE detector, which is being assembled at CERN and will be operated in the second half of 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.