Abstract
A liquid antimony (Sb) anode DCFC (direct carbon fuel cell) is fabricated on a smooth single crystal YSZ (Yttria Stabilized Zirconia) electrolyte substrate with porous Pt cathode to reveal the intrinsic reaction kinetics of electrochemical oxidation of liquid Sb and the reduction reaction characteristics of Sb2O3 with the reaction mass-produced Taixi de-ash coal fuel. The reduction kinetics of Sb2O3 with the de-ash coal is obtained using a temperature programmed reaction testing system. The reaction kinetics of the Sb2O3 with the de-ash coal can be enhanced by decreasing the coal particle size, and by adding de-ash coal into the anode chamber. The Sb2O3 accumulation at the interface between anode and electrolyte lead to the increase of ohmic resistance. While effective reaction active sites increase when the mole content of oxygen ion conductor Sb2O3 increase at the earlier stage of the cell discharging processes which further decrease the electrode polarization. The Si and Fe in the ash possibly accumulate at the interface between anode and electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.