Abstract

High shares of intermittent renewable sources cause volatile frequency movements that could jeopardize the continuous operation of the grid. Liquid Air Energy Storage (LAES) is an emerging technology that not only helps with decarbonisation of energy sectors, but also has potentials for reliable ancillary services. In this paper, a hybrid LAES, wind turbine (WT), and battery energy storage system (BESS) is used to investigate their contributions in fast frequency control. The inertial control, droop control and combined inertial and droop terms are applied on each source of the hybrid renewable system and a comprehensive analysis is conducted to study their impacts on the frequency nadir improvement. The analysis shows that LAES with combined inertial and droop control terms along with inertial control of WT and BESS provide reliable frequency control. To further improve the frequency nadir, a Fuzzy control is proposed and applied on the LAES. The proposed control system provides a more adaptive performance against disturbances. Also, experimental tests are conducted to validate the proposed control method using a real-time hardware-in-the-loop test rig. The simulation and experimental results show that LAES in a hybrid renewable system can significantly contribute to the frequency control when variable gain control schemes are implemented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call