Abstract

Deposition of a carbon layer on silicon monoxide (SiO) is an attractive method for mitigating the inherent low electrical conductivity and significant volume expansion of SiO, which is a promising anode candidate for Li-ion batteries with high energy density. Herein, we report a method for coating SiO with a vertically grown carbon layer via chemical vapor deposition using low-cost liquefied natural gas (LNG), which is 13 times less expensive than commonly used high-purity CH4. The physical and chemical properties of the carbon-coated samples obtained using CH4 (C-SiO-CH4) and LNG (C-SiO-LNG) were identical, and their electrochemical performances were superior to that of pristine SiO. This low-cost, high-volume manufacturing method promotes the industrialization of Si–C materials for next-generation Li-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call