Abstract
The phase behavior of biomolecules containing persistent molecular entities is generally limited due to their characteristic size that exceeds the intermolecular force field. Consequently, favorable properties normally associated with the liquid phase of a substance, such as fluidity or processability, are not relevant for the processing of biomolecules, thus hindering the optimal processing of biomolecules. The implied problem that arises is how to convert folded biomolecules to display a richer phase behavior. To alleviate this dilemma, a generic approach to liquefied polysaccharides-based polymers is proposed, resulting in a polysaccharide fluid with a tunable condensed state structure (solid-gel-liquid). Polysaccharide biobased fluids materials transcend the limits of the physical state of the biobased material itself and can even create completely new properties (different processing methods as well as functions) in a variety of polymeric structures. Considering the solvent incompatible high and low-temperature applications, this method will have a great influence on the design of nanostructures of biomolecular derivatives and is expected to transform biomass materials such as polysaccharide biopolymers from traditional use to resource use, ultimately leading to the efficient use of biomass materials and their sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.