Abstract

The growth in air transport and the ambitious targets in emission reductions set by advisory agencies are some of the driving factors behind research towards new fuels for aviation. Liquefied Natural Gas (LNG) could be both environmentally and economically beneficial. However, its implementation in aviation has technical challenges that needs to be quantified. This paper assesses the application of LNG in civil aviation using an integrated simulation and design framework, including Cranfield University’s aircraft performance tool, Orion, and engine performance simulation tool Turbomatch, integrated with an LNG tank sizing module and an aircraft weight estimation module. Changes in tank design, natural gas composition, airframe changes, and propulsion system performance are assessed. The performance benefits are quantified against a Boeing 737–800 aircraft. Overall, LNG conversion leads to a slightly heavier aircraft in terms of the operating weight empty (OWE) and maximum take-off weight (MTOW). The converted aircraft has a slightly reduced range compared to the conventional aircraft when the maximum payload is considered. Compared to a conventional aircraft, the results indicate that although the energy consumption is increased in the case of LNG, the mission fuel mass is decreased and CO2 emissions are reduced by more than 15%. These benefits come with a significant reduction in fuel cost per passenger, highlighting the potential benefits of adopting LNG for aviation.

Highlights

  • The Earth is reported to have lost 28 trillion tons of ice since 1994 [1]

  • This paper aims to assess the performance benefits achieved in terms of CO2 emissions and energy-saving potential by replacing kerosene with Liquefied Natural Gas (LNG), in addition to discussing the challenges presented by the use of a cryogenic fuel for aircraft propulsion

  • The LNG aircraft was sized by utilizing the simulation framework, which combines all of the LNG aircraft was sized bythe utilizing the simulation framework, combines all of the above-mentioned modules

Read more

Summary

Introduction

The Earth is reported to have lost 28 trillion tons of ice since 1994 [1] This finding coincides with a worst-case scenario predicted by the United Nation’s Intergovernmental Panel on Climate Change (IPCC). According to the Air Transport Action Group [2], the global aviation industry produces around 2% of all human-induced CO2 emissions, which constitutes approximately 12% of CO2 emissions within the transport sector. These figures are bound to grow with projected increases in passenger demand for air travel. In approximately 10 years, the global fleet is expected to grow by

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.