Abstract
This paper concerns the study of Lipschitzian stability of fully parameterized generalized equations in which both single-valued and set-valued functions depend on parameters. Various relationships between the Lipschitz-like and metric regularity properties of the solution mapping, the base mapping, or field mapping in the fully perturbed generalized equations are established by using the Dontchev–Hager Fixed Point Theorem. The implicit mapping theorem for metric regularity is also extended to fully parameterized generalized equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.