Abstract

We discuss the problem of deciding when a metrisable topological group $G$ has a canonically defined local Lipschitz geometry. This naturally leads to the concept of minimal metrics on $G$, that we characterise intrinsically in terms of a linear growth condition on powers of group elements. Combining this with work on the large scale geometry of topological groups, we also identify the class of metrisable groups admitting a canonical global Lipschitz geometry. In turn, minimal metrics connect with Hilbert's fifth problem for completely metrisable groups and we show, assuming that the set of squares is sufficiently rich, that every element of some identity neighbourhood belongs to a $1$-parameter subgroup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.