Abstract
We introduce a family of Markov processes on set partitions with a bounded number of blocks, called Lipschitz partition processes. We construct these processes explicitly by a Poisson point process on the space of Lipschitz continuous maps on partitions. By this construction, the Markovian consistency property is readily satisfied; that is, the finite restrictions of any Lipschitz partition process comprise a compatible collection of finite state space Markov chains. We further characterize the class of exchangeable Lipschitz partition processes by a novel set-valued matrix operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.