Abstract
The Gibbs tangent plane analysis is the crucial method for the determination of the global phase stability and the true equilibrium compositions of the system at elevated pressures. Previous approaches have focused on finding stationary points of the tangent plane distance function (TPDF) described by the cubic equation of state. However, there is no complete guarantee of obtaining all stationary points due to the nonconvex and nonlinear nature of the models used to predict high pressure phase equilibria. After analyzing and reformulating the structure of the derivative function of the TPDF described by the Soave–Redlich–Kwong (SRK) equation of state, it was demonstrated that the Lipschitz constant of the TPDF can be obtained with the calculation precision satisfied. Then the phase stability problem can be solved with ε-global convergence. The calculation results for two examples state that the Lipschitz optimization algorithm, i.e., Piyavskii's univariate Lipschitz optimization algorithm used in this paper, can obtain the global minimum of the TPDF for binary mixtures at elevated pressures with complete reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.