Abstract
<!-- *** Custom HTML *** --> A matchbox manifold is a connected, compact foliated space with totally disconnected transversals; or in other notation, a generalized lamination. It is said to be Lipschitz if there exists a metric on its transversals for which the holonomy maps are Lipschitz. Examples of Lipschitz matchbox manifolds include the exceptional minimal sets for $C^{1}$-foliations of compact manifolds, tiling spaces, the classical solenoids, and the weak solenoids of McCord and Schori, among others. We address the question: When does a Lipschitz matchbox manifold admit an embedding as a minimal set for a smooth dynamical system, or more generally as an exceptional minimal set for a $C^{1}$-foliation of a smooth manifold? We give examples which do embed, and develop criteria for showing when they do not embed, and give examples. We also discuss the classification theory for Lipschitz weak solenoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.