Abstract
Wasserstein projections in the convex order were first considered in the framework of weak optimal transport, and found applications in various problems such as concentration inequalities and martingale optimal transport. In dimension one, it is well-known that the set of probability measures with a given mean is a lattice w.r.t. the convex order. Our main result is that, contrary to the minimum and maximum in the convex order, the Wasserstein projections are Lipschitz continuity w.r.t. the Wasserstein distance in dimension one. Moreover, we provide examples that show sharpness of the obtained bounds for the 1-Wasserstein distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.