Abstract
Let be a bounded convex domain with C∞ boundary. Let M be a sub variety in D of dimension one which has no singular points on ∂M and intersects ∂D transversally. Assume that D is weakly totally convex in the complex tangential directions at any point in ∂M We get Lipschitz and BMO extensions of holomorphic functions from M to D
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Complex Variables, Theory and Application: An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.