Abstract
Based on the inhibitor profile, production rate, and stereochemical purity of the hydroxylated products, it was demonstrated that lipoxygenation in rat brain occurs only in the pineal. Both positional and stereochemical specificities of the hydroxylation were observed only in pineal, clearly indicating that only the pineal is capable of lipoxygenating polyunsaturated fatty acids among the rat brain regions examined. Cerebral cortex also produced hydroxy products; however, they were racemic mixtures, indicating that peroxidation was responsible for their production. Rat pineal homogenate, obtained after the brain was perfused, metabolized [14C]docosahexaenoic acid ([1-14C]22:6n3) to monohydroxy derivatives, primarily by the 12- and, to a lesser extent, by the 15-lipoxygenase (LO) reaction. The resulting metabolites were 14(S)- and 17(S)-hydroxydocosahexaenoic acid (HDoHE), as determined by reversed-phase HPLC, chiral-phase HPLC, thermospray liquid chromatography-mass spectrometry, and gas chromatography-mass spectrometry. Because blood was removed by perfusion of the brain before incubation, it was clear that the observed LO activity was not due to contamination with blood cell components. The production rate of 17-HDoHE from 22:6n3 was higher than that of 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid from 20:4n6, whereas 12-LO activity toward these two substrates was comparable. These monohydroxy metabolites were also detected in the pineal body lipid extract using negative ion chemical ionization mass spectrometry. This is the first observation of endogenous production of hydroxylated compounds in pineal. The ratio of endogenous 15-LO to 12-LO products was considerably higher than that of the in vitro production from exogenous substrate. In some cases, 15-LO products were the major LO metabolites present in the lipid extract of pineal body for both 20:4n6 and 22:6n3. Both 12- and 15-LO activities were recovered mainly in the microsomal plus cytosolic fraction. In addition to monohydroxy products, epoxy, hydroxy derivatives were formed from 22:6n3 by the pineal. The major isomer was identified as 12-hydroxy-13,14-epoxy-22:5n3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.