Abstract
Numerous studies have shown that the activation of the Nrf2 pathway alleviates oxidative stress and podocyte damage. Emerging evidence indicates that the dual anti-inflammatory and pro-resolution lipid mediator, lipoxin A4 (LXA4), has antioxidant activity. The aim of the present study was to confirm that BML-111, an analog of LXA4, prevents oxidative injury in diabetic podocytes via the regulation of the Nrf2 pathway. Here, we found that BML-111 inhibited high glucose (HG)-induced oxidative injury in the podocyte cell line, MPC5, in vitro, through activating Nrf2. Mechanistically, BML-111 significantly activated Nrf2 and its phase II enzymes, including Nqo1 and Ho-1. Moreover, BML-111 suppressed the migration of MPC5 cells. Additionally, BML-111 decreased the expression of Vcam, Icam and inflammatory cytokines (Il-1α, Il-6, and Tnf) in MPC5 cells. Importantly, BML-111 ameliorated blood glucose levels (approximately 75% of that in the SMZ group) and kidney damage by activating Nrf2, and its phase II enzymes, in diabetic mice. These effects are mainly mediated by Fpr2, a specific LXA4 receptor. Our findings demonstrate that BML-111 alleviates the injury of diabetic podocytes and kidneys by regulating the Nrf2 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.