Abstract

BackgroundIntracerebral hemorrhage (ICH) is associated with inflammation and disruption of the blood-brain barrier (BBB). Lipoxin A4 methyl ester (LXA4 ME), is a stable synthetic analog of lipoxin with anti-inflammatory properties. This study aimed to investigate the effects of LXA4 ME in a rat model of ICH.Material/MethodsMale Sprague-Dawley rats (n=120), between 12–13 weeks of age, were divided into the sham group (sham-operated), the vehicle-treated group (ICH+vehicle), the LXA4 ME-L group (ICH+low-dose LXA4 ME, 10 ng/d), and the LXA4 ME-H group (ICH+high-dose LXA4 ME, 100 ng/d). The ICH model was created by injection of autologous blood into the right basal ganglia. LXA4 ME was injected into the ventricle 10 min after the development of ICH. A modified neurological severity score (mNSS), rotarod latencies, and brain water content were used to evaluate the rats. The TUNEL assay measured neuronal cell death. Western blot was used to measure protein expression of nuclear factor kappa B (NF-κB), matrix metalloproteinase-9 (MMP-9), zonula occludens-1 (ZO-1), and claudin-5.ResultsIn the rat model of ICH, treatment with LXA4 ME reduced the levels of proinflammatory cytokines, improved neurologic function, reduced neuronal apoptosis, and reduced cerebral edema associated with damage to the BBB, and reduced the expression levels of NF-κB, MMP-9, ZO-1, and claudin-5.ConclusionsIn a rat model of ICH, treatment with LXA4 reduced early brain injury and protected the BBB by inhibiting the NF-κB-dependent MMP-9 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call