Abstract

Carbohydrate polymers exhibit incredible chemical and structural diversity, yet are produced by polymerases without a template to guide length and composition. As the length of carbohydrate polymers is critical for their biological functions, understanding the mechanisms that determine polymer length is an important area of investigation. Most Gram-positive bacteria produce anionic glycopolymers called lipoteichoic acids (LTA) that are synthesized by lipoteichoic acid synthase (LtaS) on a diglucosyl-diacylglycerol (Glc2DAG) starter unit embedded in the extracellular leaflet of the cell membrane. LtaS can use phosphatidylglycerol (PG) as an alternative starter unit, but PG-anchored LTA polymers are significantly longer, and cells that make these abnormally long polymers exhibit major defects in cell growth and division. To determine how LTA polymer length is controlled, we reconstituted Staphylococcus aureus LtaS in vitro. We show that polymer length is an intrinsic property of LtaS that is directly regulated by the identity and concentration of lipid starter units. Polymerization is processive, and the overall reaction rate is substantially faster for the preferred Glc2DAG starter unit, yet the use of Glc2DAG leads to shorter polymers. We propose a simple mechanism to explain this surprising result: free starter units terminate polymerization by displacing the lipid anchor of the growing polymer from its binding site on the enzyme. Because LtaS is conserved across most Gram-positive bacteria and is important for survival, this reconstituted system should be useful for characterizing inhibitors of this key cell envelope enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.