Abstract

Liposomes composed of egg phosphatidylcholine and cholesterol were modified with the temperature-responsive polymer poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)), and exhibited reversible surface properties with temperature. Completely reversible liposome aggregation due to P(NIPAAm-co-DMAAm) hydration/dehydration was demonstrated over four successive cycles of heating and cooling. The P(NIPAAm-co-DMAAm) polymer was hydrated during cooling, which dispersed the liposomes. The rigidity of the liposomal membrane was one of the factors in the reversible aggregation, as was the modification density of the polymer on the liposomes. A low density on relatively rigid liposomes could maintain the polymer property of reversible hydrated layers below critical solution temperature (LCST) boundary. Above the LCST, temperature-responsive polymers could also transport negatively charged liposomes into cells. The reversible behavior of the temperature-responsive polymer-modified liposomes has not been reported previously and could enable new applications for switching deposit forms as alternative drug carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.