Abstract

Self-assembly of planar supported lipid bilayers on top of hydrophilic polymer brushes is a desirable alternative to solid supported lipid bilayers and covalently tethered lipid bilayers for applications like sensing on transmembrane proteins which require a large aqueous volume between membrane and substrate. We present a simple dip-and-rinse method to produce poly(ethylene glycol) (PEG) brushes with sparse positively charged hydrophobic tethers, using poly(l-lysine)-graft-poly(ethylene glycol)-quaternary ammonium compound copolymers. The interaction of such polymer coatings with liposomes of different compositions and the conditions for formation of planar lipid bilayers of extraordinarily high fluidity on top of the >10 nm thick reservoir by liposome self-assembly and sequentially triggered rupture are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.