Abstract

Cardiolipin (CL) is a phospholipid found in the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM) in animal cells. Isocitrate dehydrogenase (ICDH) is an important catalytic enzyme that is localized at the cytosol and mitochondria; the metabolic pathway catalyzed by ICDH differs between the OMM and IMM. To estimate the possible role of lipid membrane in the enzymatic activity of NADP+-dependent ICDH, CL-modified liposomes were prepared using CL/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol (Ch), and their characteristics were analyzed based on the fluorescent probe method. The relative enzymatic activity of ICDH decreased in the presence of CL/DPPC/Ch=(30/50/20) liposome, whereas activity increased in the presence of CL/DPPC/Ch=(5/75/20) liposome. NADP+ had the greatest substrate affinity and was dominant in the regulation of ICDH activity. Analysis of membrane properties indicated that membranes in CL-modified liposomes were dehydrated by ICDH binding. Using circular dichroism analysis, CL/DPPC/Ch=(30/50/20) liposome induced a conformational change in ICDH, indicating that CL-rich membrane domains could inhibit ICDH activity. These results suggest that lipid membranes, including CL molecules, could act as a platform to regulate ICDH-related metabolic pathways such as the tricarboxylic acid cycle and lipid synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.