Abstract

Curcumin, a multi-targeting pharmacologically active compound, is a promising molecule for the treatment of skin inflammation and infection in chronic wounds. However, its hydrophobic nature remains to be a challenge in development of its pharmaceutical products, including dermatopharmaceuticals. Here we propose deformable liposomes (DLs) as a mean to overcome the curcumin limitations in skin treatment. We explored the properties and biological effects of curcumin containing DLs (curcumin-DLs) with varying surface charge by preparing the neutral (NDLs), cationic (CDLs) and anionic (ADLs) nanocarriers. The vesicles of mean diameter 200–300 nm incorporated high curcumin load mirroring the type of employed surfactant. Curcumin-CDLs provided the most sustained ex vivo penetration of curcumin through the full thickness human skin. Although the curcumin-CDLs were the most potent regarding the in vitro anti-inflammatory activity, all curcumin-DLs were superior to curcumin in solution (control). No cytotoxicity in human skin fibroblasts was detected. All DLs significantly inhibited bacterial Staphylococcus aureus and Streptococcus pyogenes growth in vitro. The curcumin-CDLs were found superior to other DLs. The incorporation of curcumin in DLs enabled both its sustained skin penetration and enhancement of its biological properties. Cationic nanocarriers enhanced the activities of curcumin to the greatest extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call