Abstract

Conventional biomimetic membranes for desalination are mostly fabricated by incorporating water channels using self-assembled lipid or polymer vesicles as key platforms for protein or water channel reconstitution. Herein, we propose a thin film composite nanofiltration membrane via an unconventional liposomes-assisted fabrication without the incorporation of protein or water channels. The polyamide skin layer containing liposomes was thinner and filled with wrinkles and nanovoids. As a result, compared with the liposome-free control membrane, our optimized liposome-assisted membrane was able to achieve an increased water permeability from 11.17 to 18.21 LMH/bar, alongside an excellent MgCl2 rejection of 95.87% and a monovalent/divalent (NaCl/MgCl2) ion selectivity (α) of 18.2. Extensive membrane characterization showed that the liposome-assisted skin layer indeed exhibited a smaller thickness with an increased effective membrane area and a reduced surface hydrophobicity, which contribute towards a reduction in the hydrodynamic resistance of the polyamide layer. Furthermore, our approach of liposome-assisted thin film composite membrane is simpler and more scalable to fabricate without protein or water channels incorporation, rendering our design more attractive for future nanofiltration using vesicle-embedded biomimetic membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call